Industrielle 3D-Drucker in der Industrie 4.0 arbeiten mit unterschiedlichen Werkstoffen und Technologien. Hier eine Übersicht der am weitesten verbreiteten additiven Fertigungsverfahren: Fused Deposition Modeling
Das bekannteste Herstellungsverfahren im 3D-Druck ist das sogenannte Fused Deposition Modeling. Hierbei trägt ein Druckkopf mit einer beheizbaren Düse einen schmelzfähigen Kunststoff schichtenweise auf eine vorgeheizte Arbeitsplatte (Hotbed) auf. Der Kunststoff wird hierfür in Drahtform auf Rollen vorkonfektioniert und über eine Mechanik in den Druckkopf eingeführt. Der aufgetragene flüssige Kunststoff verschmilzt mit dem Werkstück, wobei er auskühlt und dabei aushärtet.
Häufig genutzte Kunststoffe sind das auch in der Spielzeugindustrie beliebte Acrylnitril-Butadien-Styrol (ABS) sowie Polylactide (PLA) und Nylon.
Das Fused Deposition Modeling gehört zu den ältesten Herstellungsverfahren im 3D-Druck. Heute ist es vor allem im Hobbybereich sowie im Prototypenbau in kleinen und mittleren Unternehmen verbreitet.
Für maßhaltige und feinstrukturierte Werkstücke ist das FDM-Verfahren begrenzt geeignet, da die Fertigungstoleranzen hoch sind und Oberflächen nicht die Güte von Spritzgussteilen erreichen.
Fused Deposition Modeling mit Metallpulver
Einige Systeme arbeiten mit Kompositfilamenten aus PLA mit sehr hohem Metallpulveranteil. Das PLA dient hierbei nur als Träger für das Metall, beispielsweise Kupfer, Messing oder Bronzepulver.
Nach dem 3D-Druck wird das Werkstück in einem zweiten Arbeitsgang in einem Industrieofen erhitzt. Je nach gewähltem Metallpulver liegen die Temperaturen hierbei zwischen etwa 800 und 1200 Grad Celsius. Dadurch wird das Metall gesintert, also zu einem festen Werkstück verbacken. Zugleich wird das nun nicht mehr benötigte PLA herausgeschmolzen. Somit erhält das Werkstück seine typischen metallischen Eigenschaften wie Festigkeit, Verformbarkeit und Wärmeleitfähigkeit.
Ein Nachteil des Verfahrens ist die prinzipbedingte Werkstückschrumpfung. Sie ergibt sich durch das Herausschmelzen des PLA. Diese Schrumpfung müssen Sie entsprechend beim Werkstückdesign berücksichtigen.
Selektives Lasersintern
Beim selektiven Lasersintern (SLS) wird ein Werkstoff in Pulverform auf eine Arbeitsplatte innerhalb des Druckraums aufgetragen. Mittels Laseroptik wird das Pulver punktuell erhitzt, wodurch es an diesen Stellen aufschmilzt und aushärtet.
Nach jedem Laserdurchgang senkt der Drucker die Arbeitsplatte geringfügig ab und trägt eine weitere dünne Schicht Pulver auf, bevor die nächste Schicht des Werkstücks gelasert und so mit dem Werkstück verschmolzen wird.
Ist der Druckvorgang abgeschlossen, können Sie das Werkstück entnehmen und das Pulver nach entsprechender Aufbereitung für den nächsten Druckvorgang wiederverwenden.
Soweit beim Druck Kunststoffpulver zum Einsatz kommen, wird das Verfahren als selektives Lasersintern bezeichnet. Das gleiche Verfahren mit Keramik- oder Metallpulvern wird im Unterschied hierzu selektives Laserschmelzen (SLM) genannt. In der Praxis wird das Kürzel SLS jedoch häufig für beide Verfahren verwendet.
Beide Druckverfahren bringen besonders hochwertige Werkstücke hervor. Allerdings sind sie auch sehr kostenintensiv. Dies gilt sowohl für die Maschinen selbst, als auch für die Keramik-, Kunststoff- und Metallpulver. Ferner müssen Ihre Mitarbeiter:innen bei der Arbeit entsprechend qualifiziert sein und Schutzkleidung tragen, da das feine Pulver gefährlich für die Atemwege ist.
Binder-Jetting
Eng verwandt mit SLS und SLM ist das sogenannte Binder-Jetting. Hierbei wird das Werkstoffpulver nicht per Laser erhitzt. Stattdessen fährt eine separate Mechanik mit einem Druckkopf über jede neue Pulverschicht. Der Druckkopf benetzt das Pulver an den dafür vorgesehenen Stellen mit einem Bindemittel, das wiederum die Pulverpartikel verklebt.
Nach Ende des Druckvorgangs wird das noch unfertige Werkstück („Grünling“) aus dem Drucker entnommen. Dann wird es über weitere Arbeitsschritte veredelt – zum Beispiel durch thermisches Aushärten, durch Sintern oder durch Infiltrieren, also das Übergießen mit flüssiger Bronze. Dabei schließen sich vorhandene Hohlräume.
Stereolithografieverfahren
Das Stereolithographieverfahren (SLA) arbeitet im Unterschied zum selektiven Lasersintern mit Flüssigharzen als Ausgangsmaterial. Die verwendeten Flüssigharze werden auch als Resine bezeichnet und beim Druckvorgang mittels UV-Licht ausgehärtet.
Als Lichtquelle kommt hierbei entweder ein einzelner UV-Laser zum Einsatz oder ein Chip mit zahlreichen Mikrospiegeln, die das UV-Licht punktweise auf das Werkstück richten. Diese Technologie wird auch als Digital Light Processing (DLP) bezeichnet.
Der 3D-Drucker belichtet das Werkstück bei der Stereolithographie auf dem Kopf stehend auf einer Arbeitsplatte in einem Resintank. Die Belichtung erfolgt durch eine UV-durchlässige Folie an der Unterseite des Resintanks hindurch. Nach jedem Durchgang hebt der Drucker das Werkstück geringfügig an und die nächste Harzschicht wird von unten belichtet und dabei mit dem Werkstück verschmolzen. Das Werkstück wächst also auf dem Kopf stehend aus dem Resintank heraus.
LCD-Druck
Eng verwandt mit dem SLA-Verfahren ist der sogenannte LCD-Druck. Hier arbeitet der Drucker mit einem Flüssigkristalldisplay (LCD), das sich zwischen Resintank und Lichtquelle befindet. Die Lichtquelle beleuchtet das gesamte Display wieder von der Unterseite her, allerdings nicht punktuell, sondern flächig. Das Display ist in ausgeschaltetem Zustand lichtundurchlässig. Nur an den Stellen, wo das Werkstück belichtet werden soll, werden die entsprechenden Pixel des Displays aktiviert, sodass sie dort punktuell UV-Licht durchlassen.
Wie beim SLA-Druck entsteht auch hier das Werkstück verkehrt herum und wächst schichtweise aus dem Resintank heraus.
Der LCD-Druck ist technisch günstiger zu realisieren als der SLA-Druck. Deswegen gibt es ein reichhaltiges Angebot an LCD-Druckern auch im Hobbybereich. SLA- und LCD-Drucker finden Sie überall dort in der Industrie, wo es auf hohe Maßhaltigkeit und feine Strukturen, jedoch nicht unbedingt auf die Festigkeit und Temperaturbeständigkeit von gesinterten Metallen ankommt.
Über mehrere Zwischenschritte können Sie auch von Resindrucken Gussformen abnehmen und hiermit Metall- oder Gipsabgüsse anfertigen. Entsprechende Verfahren kommen beispielsweise in der Dentaltechnik und der Schmuckherstellung zum Einsatz.
Einige Hersteller unterscheiden in ihren Produktlinien explizit zwischen SLA-, DLP- und LCD-Druckern. Andere Hersteller sehen ihre LED-Drucker als besondere Bauform der SLA-Drucker. Beim Druckerkauf sollten Sie sich daher genau informieren, welche Technik im Gerät Ihrer Wahl tatsächlich zum Einsatz kommt.
So sind LCD-Drucker zwar günstiger in Anschaffung und Unterhalt, aber dafür oft sehr wartungsintensiv. Beispielsweise unterliegen LCD-Displays prinzipbedingt einem hohen Verschleiß durch die energiereiche UV-Strahlung.
Computed Axial Lithography
Noch wenig bekannt ist das Verfahren der Computed Axial Lithography. Hierbei wird ein lichtaushärtendes Resin in ein Gefäß gefüllt, dessen Außenhülle UV-lichtdurchlässig ist. Anschließend wird das Gefäß mit dem Resin darin in eine langsame Rotation versetzt und dabei von einem Projektor mit UV-Licht angestrahlt. Das Projektorbild liefert nacheinander die einzelnen Seitenansichten des zu druckenden Objektes – abgestimmt auf die Rotationsgeschwindigkeit des Gefäßes.
Nach wenigen Umdrehungen und etwa zwei Minuten ist das fertige Objekt im Resinbad entwickelt und kann aus dem Gefäß entnommen werden. Einsatzgebiete sieht der Hersteller beispielsweise in der kostengünstigen und individuellen Herstellung von Werbemitteln.
Der Projektor bezieht sein Bild aus einem angeschlossenen PC, kann aber ebenso via IoT-Netzwerk an die Unternehmens-Cloud angeschlossen werden.