Die Internet Engineering Task Force (IETF) hat das neuere Internetprotokoll IPv6 (Internet Protocol, Version 6) bereits 1998 als offiziellen Nachfolger von IPv4 vorgestellt. Es funktioniert auf andere Weise als IPv4 und ermöglicht dadurch deutlich mehr Optionen hinsichtlich der Adressvergabe im Internet. Der neuere Standard arbeitet im 128-Bit-Bereich und ermöglicht die Adressierung von theoretisch 340 Sextillionen verschiedenen Internetadressen (eine Sextillion entspricht einer Eins mit 36 Nullen).
„Leicht zu merken“ sind derartige Adressen oder Adressbereiche aber nicht mehr – sofern sie es vorher überhaupt waren. Doch vielleicht muss das auch gar nicht sein. Vor allem die dauerhafte Vernetzung von Geräten des IoT ist nur mit IPv6 sinnvoll möglich: Mit IPv6 erhalten IoT-Geräte eine dauerhafte und nicht länger eine dynamisch vergebene Adresse. Beispiele dafür sind Steuerungseinheiten im Produktionskreislauf einer Smart Factory, Sensoren bei Verkehrsleitsystemen einer Smart City und sogar einzelne Produkte innerhalb eines smarten Kühlschranks. Sie alle können über eine eigene IPv6-Adresse verfügen. Eine IPv6-Adresse besteht aus 32 Hexadezimalzahlen, die in acht Blöcke getrennt werden. Sie kann zum Beispiel folgendermaßen aussehen:
2a02:0db8:0b01:08d3:0215:5dff:0370:0a02
Die 128-Bit-Adresse ist in einen üblicherweise 64 Bit langen Präfix und einen ebenfalls 64 Bit langen Identifier unterteilt. Daran schließen sich häufig so genannte Privacy Extensions an, die dafür sorgen sollen, dass auf Basis einer IPv6-Adresse keine Rückschlüsse auf ein konkretes Gerät gezogen werden können.
Vorteile von IPv6
Bereits am 6. Juni 2012 wurden zahlreiche Unternehmen auf den neuen IPv6-Standard „umgestellt”. Dies bedeutete jedoch zunächst nur, dass diese sowohl mit Hilfe von IPv4 als auch IPv6 erreichbar waren und sind. Eine allgemeine Umstellung des Internet-Datenverkehrs auf IPv6 gestaltet sich momentan noch schwierig, da viele Geräte aktuell einfach nicht IPv6-fähig sind.
Trotzdem findet der neue IP-Standard immer mehr Verbreitung und eröffnet interessante Möglichkeiten: Künftig könnten, vor allem in Verbindung mit Narrowband IoT, noch mehr Gegenstände und Güter an das Internet angebunden werden – und zwar bidirektional. Denn jedes Gerät ist damit dauerhaft über eine unveränderliche, feste IP-Adresse erreichbar. Das bedeutet, dass die Geräte nicht nur eine Anforderung an das Internet senden können, sondern auch zu jeder Zeit und grundsätzlich von jedem beliebigen Ort der Welt aus erreichbar sind und gesteuert werden können. Neben den naheliegenden Anwendungsmöglichkeiten im Smart-Home-Bereich ergeben sich gerade für Firmen völlig neue Möglichkeiten, ihre verteilte Infrastruktur vollständig über das Internet zu überwachen und zu steuern.
Doch es gibt noch weitere Vorteile mit IPv6:
Sicherheitsaspekte: Wenn ein einzelner Router auf IPv4-Basis gehackt wird, ist das schlimm genug – doch bei der weltweiten Erreichbarkeit einzelner Geräte und ganzer Geräteverbunde mit IPv6 sind zusätzliche Sicherheitsmechanismen erforderlich. Aus diesem Grund unterstützt IPv6 nativ die Ende-zu-Ende-Verschlüsselung (IPsec) bei der Datenübertragung. Auch die Identität von Teilnehmer:innen lässt sich mit Hilfe von Verschlüsselungsverfahren nicht so leicht fälschen wie bei IPv4, was sogenannte Man-in-the-Middle-Attacken deutlich schwieriger macht. Skalierbarkeit: Wie bereits angesprochen, bietet IPv6 die Möglichkeit, sehr viel mehr Geräte als bisher mit dem Internet zu verbinden. In Verbindung mit dem riesigen Adressraum von IPv6 bedeutet dies vor allem für Hersteller von IP-basierten Geräten zusätzliche Sicherheit. Diese können sicher sein, dass sich ihre Produkte auch in einigen Jahren noch zuverlässig mit dem Internet verbinden lassen.
Reduzierte Komplexität: IPv6-Adressen sind im Aufbau komplexer als IPv4-Adressen. Die zusätzliche Adresslänge spart künftig jedoch eine Menge Aufwand bei der sogenannten Netzwerkadressübersetzung (NAT).
Der Ping-Test bei Ipv6
Mit dem sogenannten Ping-Test stellen Sie fest, ob eine bestimmte Zieladresse erreichbar ist. Eventuell wollen Sie auch herausfinden, welche Latenzzeit diese besitzt, also wie lange Datenpakete brauchen, wenn Sie von Ihrem Rechner zum Zielort und zurück reisen.
Der Ping einer IPv6-Adresse erfolgt hierbei ähnlich wie bei IPv4, nur dass Sie anstelle der IPv4-Adresse eine IPv6-Adresse angeben. Voraussetzung hierfür ist allerdings, dass Sie via IPv6 mit dem Internet verbunden sind – ansonsten erhalten Sie eine Fehlermeldung. Unter Windows läuft das Anpingen einer solchen IPv6-Adresse wie folgt ab:
Öffnen Sie mit Hilfe von „Start | Ausführen | cmd” eine Eingabeaufforderung (eventuell sind hierzu Administratorrechte erforderlich).
Geben Sie die Ping-Befehl wie folgt ein: „ping [IPv6-Adresse]” (beachten Sie hierbei, dass Sie Nullen in der Adresse weglassen können)
Bei erfolgreichem Ping sollten Sie eine Antwort in etwa in dieser Form erhalten:
C:Usersfeatured>ping 2f02:b02:d::c3
Ping wird ausgeführt für 2f02:b02:d::c3 mit 32 Bytes Daten:
Antwort von 2f02:b02:d::c3: Zeit=20ms
Antwort von 2f02:b02:d::c3: Zeit=54ms
Antwort von 2f02:b02:d::c3: Zeit=70ms
Antwort von 2f02:b02:d::c3: Zeit=33ms
Ping-Statistik für 2f02:b02:d::c3:
Pakete: Gesendet = 4, Empfangen = 4, Verloren = 0
(0% Verlust),
Ca. Zeitangaben in Millisek.:
Minimum = 20ms, Maximum = 70ms, Mittelwert = 44ms